1–2 déc. 2022
Le Bois-Marie
Fuseau horaire Europe/Paris

Schoenberg Correspondence and Semigroup of k-(super)positive Operators

1 déc. 2022, 16:00
45m
Centre de conférences Marilyn et James Simons (Le Bois-Marie)

Centre de conférences Marilyn et James Simons

Le Bois-Marie

35, route de Chartres 91440 Bures-sur-Yvette

Orateur

Prof. Purbayan CHAKRABORTY (Université de Bourgogne-Franche-Comté)

Description

The famous Lindblad, Kossakowski, Gorini, and Sudarshan's (LKGS) theorem characterizes the generator of a semigroup of completely positive maps. Motivated by this result we study the characterization of the generators of other positive maps e.g. k-positive and k-super positive maps. We prove a Schoenberg-type correspondence for a general non-unital semigroup of operators and apply this result to different cones of positive operators in $L(M_n, M_n)$ which are interesting for quantum information. As a corollary of our result, we re-establish the LKGS's theorem.

Documents de présentation