Orateur
Kei Irie
Description
For any star-shaped toric domain in $\mathbb{C}^2$, we define a filtered chain complex which conjecturally computes positive $S^1$-equivariant symplectic homology of the domain.
Assuming this conjecture, we show that the sequence $(c^{\mathrm{GH}}_k(X)/k)_k$ has a limit as $k$ goes to $\infty$, where $c^{\mathrm{GH}}_k$ denotes the $k$-th Gutt-Hutchings capacity.