Séminaire de Mathématique

Sen Operators and Lie Algebras arising from Galois Representations over p-adic Varieties

by Tongmu He (IHES & Paris-Saclay)

Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane


Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette

Any finite-dimensional p-adic representation of the absolute Galois group of a p-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen and Brinon. We generalize their construction to the fundamental group of a p-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. Our construction relies on a descent theorem in the p-adic Simpson correspondence developed by Tsuji. When the representation comes from a Qp-representation of a p-adic analytic group quotient of the fundamental group, we describe its Lie algebra action in terms of the Sen operators, which is a generalization of a result of Sen and Ohkubo. These Sen operators can be extended continuously to certain infinite-dimensional representations. As an application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing a result of Pan.


Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.


Organized by

Ahmed Abbes