Séminaire de Mathématique

p-adic Weight Monodromy Conjecture for Complete Intersections

par Hiroki Kato (Max Planck Institute for Mathematics, Bonn)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

For $\ell$-adic cohomology, the weight monodromy conjecture for complete intersections was proved by Scholze in his celebrated paper. Using his theory of perfectoid spaces, he reduced it to the equal characteristic case, which was already proved by Deligne. Considering that the equal characteristic case of the p-adic weight monodromy conjecture has been also formulated and proved (by Crew and Lazda--Pal), it is natural to try to reduce the p-adic weight monodromy conjecture to the equal characteristic case using Scholze's technique. In this talk, I will discuss how to realize it (joint work with Federico Binda and Alberto Vezzani). 

 


Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.

 

Organisé par

Ahmed Abbes

Contact