Cours de l'IHÉS­­ 2015-2016

Catégories syntactiques pour les motifs de Nori (2/3)

by Prof. Laurent LAFFORGUE (IHÉS)

Europe/Paris
Amphithéâtre Léon Motchane (Institut des Hautes Etudes Scientifiques)

Amphithéâtre Léon Motchane

Institut des Hautes Etudes Scientifiques

Le Bois-Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

Il s'agit d'exposer un travail (http://arxiv.org/abs/1506.06113) cosigné avec Luca Barbieri-Viale et Olivia Caramello et essentiellement réalisé par cette dernière à partir d'une question initiale posée par le premier.
 

Le cours aura pour but d'expliquer une nouvelle construction, basée sur la logique catégorique, de la catégorie abélienne Q-linéaire de motifs mixtes que Nori a associée à tout foncteur cohomologique ou homologique à valeurs dans les Q-espaces vectoriels de dimension finie.
 

Cette nouvelle construction garde un sens pour les espaces vectoriels de dimension infinie, si bien qu'elle permet d'associer une catégorie Q-linéaire de motifs mixtes à tout foncteur (co)homologue à coefficients de caractéristique 0, donc non seulement à l'homologie de Betti (comme Nori lui-même avait fait) mais aussi, par exemple, aux cohomologies l-adiques, p-adique ou motivique.
 

Le caractère très constructif de la définition permet de montrer que les catégories abéliennes de motifs mixtes associées à différents foncteurs (co)homologiques sont équivalentes si et seulement si une famille bien précise (de nature logique) de propriétés explicites est vérifiée identiquement par ces foncteurs. Le double problème de l'existence d'une théorie cohomologique universelle et de l'équivalence entre les informations renfermées dans les différents foncteurs cohomologiques classiques est donc réduit à la vérification que ces propriétés explicites sont communes à ces foncteurs.
 

Le cours s'attachera en particulier à rendre familiers un langage et quelques résultats de logique catégorique qui ne sont généralement pas connus des géomètres algébristes.

From the same series
1 3
Contact