27 juin 2022 à 1 juillet 2022
Institut de Mathématiques de Bourgogne (IMB)
Fuseau horaire Europe/Paris

Bethe ansatz solution for a new integrable open quantum system

29 juin 2022, 11:00
20m
Salle René Baire (4th floor) (Institut de Mathématiques de Bourgogne (IMB))

Salle René Baire (4th floor)

Institut de Mathématiques de Bourgogne (IMB)

Université Bourgogne Franche-Comté Faculté des Sciences Mirande 9 avenue Alain Savary Dijon, France

Orateur

Chiara Paletta (Trinity)

Description

In nature, the interaction of a system with the environment cannot be avoided. If the response of the environment is Markovian, the density matrix will evolve through the Lindblad Master equation: dependent on the Hamiltonian of the system and a jump operator describing the coupling to the environment. In PRL 126.24 (2021): 240403, we gave a partial classification of Yang Baxter Integrable interacting systems, including several new models with interesting features. In this talk, I will focus on one of the models (model B3): I will give the analytical expression of the Non Equilibrium steady states and also its physical properties. I will also show how to solve this model via the nested Algebraic Bethe Ansatz method.

Documents de présentation