Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Journée Statistique et Informatique pour la Science des Données à Paris Saclay
Wednesday, January 26, 2022 -
9:30 AM
Monday, January 24, 2022
Tuesday, January 25, 2022
Wednesday, January 26, 2022
10:10 AM
Welcome
Welcome
10:10 AM - 10:20 AM
Room: Zoom Webinaire
10:20 AM
Information-Theoretic Methods in Data Sciences: Model Uncertainty, Robustness and Model Drift
-
Pablo Piantanida
(
L2S/CentraleSupélec
)
Information-Theoretic Methods in Data Sciences: Model Uncertainty, Robustness and Model Drift
Pablo Piantanida
(
L2S/CentraleSupélec
)
10:20 AM - 11:00 AM
Room: Zoom Webinaire
Deep learning models are known to be bad at signalling failure: These probabilistic models tend to make predictions with high confidence, and this is problematic in real-world applications to critical systems such as healthcare, self-driving cars, among others, where there are considerable safety implications, or where there are discrepancies between the training data and data at testing time that the model makes predictions on. There is a pressing need both for understanding when models predictions should (or should not) be trusted, detecting out-of-distribution examples, and in improving model robustness to adversarial and natural changes in the data. In this talk, we will give an overview of those fundamental problems and key tasks. Namely, we first examine model uncertainty and calibration, and then we discuss simple but still effective methods for detecting misclassification errors and out-of-distribution examples, and for improving robustness in deep learning. We will describe information-theoretic concepts from fundamentals to state-of-the-art approaches, by going into a deep dive into promising avenues and will close by highlighting open challenges in the field.
11:00 AM
Coffee Break
Coffee Break
11:00 AM - 11:10 AM
Room: Zoom Webinaire
11:10 AM
Bi-level Optimisation for Machine Learning
-
Thomas Moreau
(
INRIA Paris-Saclay
)
Bi-level Optimisation for Machine Learning
Thomas Moreau
(
INRIA Paris-Saclay
)
11:10 AM - 11:50 AM
Room: Zoom Webinaire
In recent years, bi-level optimization -- solving an optimization problem that depends on the results of another optimization problem -- has raised much interest in the machine learning community. This type of problem arises in many different fields, ranging from hyper-parameter optimization and data-augmentation to dictionary learning. A core question for such a problem is the estimation of the gradient when the inner problem is not solved exactly. While some fundamental results exist, there is still a gap between what is used in practice and our understanding of the theoretical behavior of such problems. In this talk, I will review different use cases where this type of problem arises as well as recent advances on how to solve them efficiently.
11:50 AM
Optimal Transport on Graph Data : Barycenters and Dictionary Learning
-
Rémi Flamary
(
CMAP/Ecole polytechnique
)
Optimal Transport on Graph Data : Barycenters and Dictionary Learning
Rémi Flamary
(
CMAP/Ecole polytechnique
)
11:50 AM - 12:30 PM
Room: Zoom Webinaire
In recent years the Optimal Transport (OT) based Gromov-Wasserstein (GW) divergence has been investigated as a similarity measure between structured data expressed as distributions typically lying in different metric spaces, such as graphs with arbitrary sizes. In this talk, we will address the optimization problem inherent in the computation of GW and some of its recent extensions, namely the Entropic and the Fused GW divergences. Next we will illustrate how these OT problems can be used to model graph data in learning scenarios such as graph compression, clustering and classification. Finally we will present a novel approach performing linear dictionary learning on graphs datasets using GW as data fitting term which simultaneously provides convenient graphs modeling for the aforementioned applications and efficient approximations to the GW divergence.
12:30 PM
Lunch
Lunch
12:30 PM - 2:00 PM
Room: Zoom Webinaire
2:00 PM
Machine Learning Competitions: a Meta-Learning Perspective
-
Isabelle Guyon
(
LISN/INRIA Tau
)
Machine Learning Competitions: a Meta-Learning Perspective
Isabelle Guyon
(
LISN/INRIA Tau
)
2:00 PM - 2:40 PM
Room: Zoom Webinaire
Our research aims at reducing the need for human expertise in the implementation of pattern recognition and modeling algorithms, including Deep Learning, in various fields of application (medicine, engineering, social sciences, physics), using multiple modalities (images, videos, text, time series, questionnaires). To that end, we organize scientific competitions (or challenges) in Automated Machine Learning (AutoML) and expose the community to progressively harder and more diverse settings, ever-reducing the need for human intervention in the modeling process. The code of winning teams is open-sourced. In this presentation, we adopt the perspective that every challenge has a secret goal: that the winning algorithm will meta-generalize, i.e. perform well on new tasks it has never seen before. In particular, AutoML challenges, which test participants on multiple-tasks, can be thought of as meta-learning devices, aiming as training algorithms to perform well on tasks drawn from a particular domain, such that they will perform well in the future on similar tasks. Taking that angle, we apply the same principles of learning theory used to harness overfitting at the “regular learning level” to explain how to select a winner without meta-overfitting the tasks of the challenge. We will end with tips on how to organize your own challenge to further your own goals, and effectively meta-generalize!
2:40 PM
Coffee Break
Coffee Break
2:40 PM - 2:50 PM
Room: Zoom Webinaire
2:50 PM
Change-Point Detection in Dynamic Networks
-
Olga Klopp
(
CREST/ESSEC business school
)
Change-Point Detection in Dynamic Networks
Olga Klopp
(
CREST/ESSEC business school
)
2:50 PM - 3:30 PM
Room: Zoom Webinaire
Structural changes occur in dynamic networks quite frequently and its detection is an important question in many applications. In this talk we consider the problem of change point detection at a temporal sequence of partially observed networks. The goal is to test whether there is a change in the network parameters. Our approach is based on the Matrix CUSUM test statistic and allows growing size of networks. We propose a new test and show that it is minimax optimal and robust to missing links.
3:30 PM
Deep Learning Strategies for SAR Image Restoration
-
Florence Tupin
(
LTCI/Télécom Paris
)
Deep Learning Strategies for SAR Image Restoration
Florence Tupin
(
LTCI/Télécom Paris
)
3:30 PM - 4:10 PM
Room: Zoom Webinaire
SAR (Synthetic Aperture Radar) images are invaluable data for earth observation. They can be acquired at any time, regardless of the meteorological conditions, and provide information on the characteristics of the earth, its height and its possible movement thanks to the phase information of the backscattered electro-magnetic field.Due to the coherent imaging of the SAR sensors, images present strong fluctuations due to the speckle phenomenon. This phenomenon is a major obstacle for the analysis and understanding of SAR images. After an introduction to SAR imaging and SAR data statistics, the objective of this talk is to present some deep learning strategies to restore SAR images, in particular plug-and-play techniques, supervised, semi-supervised, and self-supervised methods. We will show how introducing the model of speckle physics inside the deep learning framework allow to outperform the state of the art methods.
4:10 PM
Closing words
Closing words
4:10 PM - 4:20 PM
Room: Zoom Webinaire