Description
CLIQUER ICI POUR REJOINDRE LA SALLE 2
Président.e de session : Mathilde Boissier
Modérateur.trice : Matthieu Aussal
Soit $N, m , d \in \mathbb{N}^*$, $\Omega$ un ouvert borné régulier de $\mathbb{R}^d$, $\omega$ un ouvert inclus dans $\Omega$ et $T>0$. On considère un système linéaire parabolique de $N$ équations couplées avec contrôle interne sur $\omega$, de la forme
$$
\tag{1} \left {
\begin{array}{l l l}
\partial_t Y - D \Delta Y &= A Y + B u \mathbf{1}_{\omega} &\text{sur } \Omega_T,...
In this presentation, we will talk about networks of $d \in \mathbb{N}$ scalar conservation laws with positive characteristic velocities. The interaction takes place at the boundary, where a feedback operator acts. The open loop system is given below with $H$ a square matrix given by the physics having a destabilizing effect:
\begin{equation}
\left{
\begin{array}{lll}
R_t + [f(R)]_x &=&...
The mechanical Contact between two bodies is one of the most difficult problems in solid mechanics, indeed the material non-linearity must be taken into account and the contact area is unknown. In the case of frictional contact another non-linearity must be considered and makes the problem even more difficult. There exist several algorithms to solve the contact problems [3], most of them...