Orateur
Description
De nombreux algorithmes existent aujourd'hui pour résoudre les équations de Kohn-Sham en calcul de structure électronique. Ils sont soit basés sur la minimisation sous contraintes de l'énergie ou sur des itérations de point fixe pour résoudre la formulation auto-cohérente du problème. Il n'est pas clair quelle classe d'algorithmes est la plus efficace et la plus robuste en fonction des situations. Nous proposons ici une première approche de la compréhension de la différence intrinsèque entre deux algorithmes simples de chaque classe : un SCF amorti et une descente de gradient projeté. Nous établissons une analyse locale de la minimisation d'une fonctionnelle régulière sur l'ensemble des projecteurs orthogonaux de rang fixé et nous dérivons des ordres de convergence explicites, confirmés par des résultats numériques.
Références:
- P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008.
- E. Cancès and C. Le Bris. On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: Mathematical Modelling and Numerical Analysis, 34(4):749–774, July 2000.