3–4 déc. 2020
Virtuel
Fuseau horaire Europe/Paris

An asymptotic preserving and well-balanced scheme for the M\textsubscript{1} model for radiative transfer

4 déc. 2020, 11:00
30m
Zoom (Virtuel)

Zoom

Virtuel

Salle 1 : https://zoom.us/j/94929969299 Salle 2 : https://zoom.us/j/98740649245 Salle 3 : https://zoom.us/j/99534523679

Orateur

Hélène Bloch (Maison de la Simulation, CEA Paris-Saclay)

Description

The problem of radiative transfer describes the interaction between light and matter, therefore it appears in many astrophysical systems, such as atmospheric physics (Chandrasekhar, 1960). Instead of solving a complex equation in a seven dimensional space, one can use a moment model by averaging over the direction of propagation to follow the radiative energy, flux, pressure, etc in a five dimensional space. By using a closure relation expressing the radiative pressure as a function of radiative energy and flux, one can derive the M1 model (Dubroca and Feugeas, 1999) that is able to accurately capture the two main regimes in radiative transfer: optically thin medium in which photons are free-streaming and the optically thick medium in which photons are constantly interacting and obey a diffusion equation in the asymptotic limit (Mihalas and Mihalas, 1984)

We rewrite the M1 model similarly than Euler equations and, inspired by all-regime schemes for hydrodynamics such as Padioleau et al., 2019, we propose a new solver based on a splitting approach similar to acoustic-transport splitting for hydrodynamics. Unlike Lagrange-projection methods (Buet and Despres, 2008), the extension to the multi-dimensional case is straightforward following the all-regime approach

The implementation is done using the code ARK-RT, a fork of the code ARK developed in Padioleau et al., 2019 in order to achieve high performance computing and portability across different architectures (e.g. multi-core, many-core, GP-GPU).

Auteur principal

Hélène Bloch (Maison de la Simulation, CEA Paris-Saclay)

Documents de présentation