Orateur
Federico Binda
(University of Milano)
Description
Using a geometric definition of logarithmic Hochschild homology of derived pre-log rings, we construct an André-Quillen type spectral sequence and show a logarithmic version of the Hochschild-Kostant-Rosenberg theorem. We use this to show that (log) Hochschild homology is representable in the category of log motives. Among the applications, we deduce a residue sequence for Hochschild homology involving blow-ups of log schemes, generalising results of Rognes-Sagave-Schlichtkrull. This is a joint work with Tommy Lundemo, Doosung Park and Paul Arne Østvær.