Speaker
Description
I will present extreme mass ratio inspirals (EMRIs), during which a small body spirals into a supermassive black hole, in gravity theories with additional scalar fields. No-hair theorems and properties of known theories that manage to circumvent them introduce a drastic simplification to the problem: the effects of the scalar on supermassive black holes, if any, are mostly negligible for EMRIs in vast classes of theories. I will show how to exploit this simplification to model the inspiral perturbatively and demonstrate that the scalar charge of the small body leaves a significant imprint on gravitational wave emission. This result is particularly appealing, as this imprint is observable with LISA, rendering EMRIs promising probes of scalar fields.