Réunion annuelle du GDR de topologie algébrique

Europe/Paris
Grand Amphithéâtre de Mathématiques (Strasbourg)

Grand Amphithéâtre de Mathématiques

Strasbourg

Unité de Formation de Recherche Mathématique et Informatique 7 rue René-Descartes 67084 Strasbourg
Description

Colloque 2021 : 🥨 Strasbourg 🥨

Une vue de Strasbourg ; Crédit : Wikimedia Commons, photo par Sergey Ashmarin

La réunion annuelle du GDR 2875 se tient à l'Université de Strasbourg.  

Minicours

Kathryn Hess Bellwald  (École Polytechnique Fédérale de Lausanne) donnera un mini-cours intitulé « Topological adventures in neuroscience ».

Conférenciers invités

  • Alexander Berglund (Stockholm), « Algebraic models for classifying spaces of fibrations »
  • Joana Cirici (Barcelone), « A-infinity structures on almost complex manifolds »
  • Cristina Costoya (A Coruña), « Homotopically inflexible algebras »
  • Najib Idrissi (Paris),  « (Non-)formality of Swiss-cheese operads and variants »
  • Bruno Vallette (Paris), « Higher Lie theory »
  • Sarah Whitehouse (Sheffield), « Model structures and spectral sequences »
  • Sinan Yalin (Angers),  « Integrability of derived complex spaces »

Attention : consigne sanitaire

/ ! \  Le passe sanitaire est requis pour tous les participants. / ! \

Il est demandé par l'université pour l'accès à la salle de conférence, et par le restaurant pour les repas de midi.

Financement

Les participants qui ont besoin de financement (pour le transport, pour l'hébergement ou pour les deux) doivent l'indiquer en remplissant le formulaire d'inscription, avec une estimation du montant de la subvention demandée. Vous pouvez également déposer un fichier PDF avec des informations (par exemple, votre CV,  votre liste de publications ou une lettre de motivation) pertinentes pour votre demande de subvention.

/ ! \ Les demandes de financement ne sont plus possibles, sauf cas exceptionnel, depuis début septembre. / ! \

Exposés sur proposition

On accepte les propositions d'exposés. Vous pouvez déposer un fichier PDF avec le titre et le résumé de l'exposé que vous proposez pour le colloque en remplissant le formulaire d'inscription. Ces propositions peuvent également être envoyées à l'adresse courriel algtop2021@math.unistra.fr avant le 1er septembre 2021. 

/ ! \  La date limite pour les propositions d'exposés est passée. / ! \

Organisation

  • Organisateurs : Frédéric Chapoton (Strasbourg), Vladimir Dotsenko (Strasbourg).
  • Comité scientifique : Damien Calaque (Montpellier), David Chataur (Amiens - responsable du GDR),  Muriel Livernet (Paris 7), Nicolas Tabareau (Nantes), Christine Vespa (Strasbourg).
  • Secrétariat : Jessica Maurer-Spoerk (Université de Strasbourg).  

Partenaires

cnrs       cnrs       irma       unistra

Participants
  • Alexander Berglund
  • Anibal Medina-Mardones
  • Antoine FELTZ
  • Antoine Touzé
  • Arthur Soulié
  • Aurélien Djament
  • Basile Coron
  • Benjamin Enriquez
  • Benoit Fresse
  • Bruno Vallette
  • Bérénice Delcroix-Oger
  • Christian Ausoni
  • Christine Vespa
  • Christophe Boilley
  • Clemens Berger
  • Clément Cheneviere
  • Coline Emprin
  • Cristina Costoya
  • David Chataur
  • El Mehdi CHERRADI
  • Etienne Batelier
  • François Métayer
  • Frederic Chapoton
  • Friedrich Wagemann
  • Félix Loubaton
  • Geoffrey Powell
  • Geoffroy Horel
  • Guillaume Laplante-Anfossi
  • Hans-Werner Henn
  • Hugo Pourcelot
  • Iacopo Giordano
  • Ismaïl Razack
  • Ivo Dell'Ambrogio
  • Jacques Darné
  • Jerome Scherer
  • Joan Bellier-Millès
  • Joana Cirici
  • Jovana Obradovic
  • Julien Ducoulombier
  • Kathryn Hess Bellwald
  • Khalef Yaddaden
  • Lorenzo Guerra
  • Lucas DARBAS
  • Léo Hubert
  • Mariam Pirashvili
  • Martin Gonzalez
  • Martin Palmer-Anghel
  • Najib Idrissi
  • Nassim El Aflej
  • Nicola Carissimi
  • Noemie Combe
  • Noé Sotto
  • Oisín Flynn-Connolly
  • Olivia Monjon
  • Ouriel BLOEDE
  • Patrick Polo
  • Paul Laubie
  • Paul-André Melliès
  • Pedro Tamaroff
  • Pierre Guillot
  • Pierre-Louis CURIEN
  • Samuel Lavenir
  • Sebastian Cea
  • Silvère Nédélec
  • Sinan Yalin
  • Sinan Yalin
  • Sophie d'Espalungue
  • Thibaut Mazuir
  • Thomas Gaujal
  • Thu Ha Trieu
  • Victor Roca Lucio
  • Victoria Callet
  • Vincent Franjou
  • Vladimir Dotsenko
  • Xu-an Zhao
  • Xuan Bach Nguyen
    • 10:00
      Enregistrement, café
    • 1
      Topological adventures in neuroscience (1ère partie)

      Over the past decade, research at the interface of topology and neuroscience has grown remarkably fast. Topology has, for example, been successfully applied to objective classification of neuron morphologies, to automatic detection of network dynamics, to understanding the neural representation of natural auditory signals, and to demonstrating that the population activity of grid cells exhibits toroidal structure, as well as to describing brain structure and function and analyzing the relationship between them in a novel and effective manner. In this series of lectures, I’ll provide an overview of various promising recent applications of topology in neuroscience.

      Orateur: Kathryn Hess Bellwald (EPFL)
    • 12:00
      Déjeuner
    • 2
      Genus zero modular operad & Grothendieck-Teichmüller group’s avatar
      Orateur: Noémie Combe
    • 3
      Mapping class group representations via Heisenberg homology
      Orateur: Martin Palmer-Anghel
    • 15:30
      Pause café
    • 4
      Autour de l'action de membranes

      Étant donnée une ∞-opérade cohérente O, on peut munir l’espace des extensions de l’identité d’une structure canonique de O-algèbre, à valeurs dans la catégorie des cocorrespondances. Cette action a été introduite par Toën puis adaptée par Mann–Robalo en vue d’applications aux invariants de Gromov–Witten. J’exposerai une généralisation de cette construction, couvrant le cas des ∞-opérades colorées ou munies de l’action d’un groupe topologique. Enfin, je mentionnerai quelques applications possibles en topologie des cordes.

      Orateur: Hugo Pourcelot
    • 5
      A simplicial approach to the sheaf theoretic construction of intersection cohomology

      Intersection (co)homology is a way to enhance classical (co)homology, allowing us to use a famous result called Poincaré duality on a large class of spaces known as stratified pseudomanifolds. There is a theoretically powerful way to arrive at intersection (co)homology by a classifying sheaves that satisfy what are called the Deligne axioms.

      Parallel to this, it is common knowledge in algebraic topology that simplicial structures make for good representations of topological spaces. There is a successful way to construct a simplicial intersection (co)homology exposed in the works of D. Chataur, D. Tanré and M. Saralegi-Araguren, but a simplicial manifestation of the Deligne axioms has remained under shadows until now.

      This exposition draws on constructions made by these authors, showing a simplicial manifestation of the Deligne axioms. We begin by exposing the classical theory, then presenting a construction of simplicial sheaves and a statement of simplicial Deligne axioms that work for the different simplicial structures, to finally focus on simplicial complexes, with which we can successfully arrive into a way to construct simplicial intersection (co)homology.

      This exposition summarizes the results obtained during my PhD thesis under the guidance of professor David Chataur.

      Orateur: Sebastian Cea
    • 6
      (Non-)formality of the Swiss-Cheese operads and variants

      The usual Swiss-Cheese operad encodes triplets (A,B,f), where A is an algebra over the little disks operad in dimension n (i.e., an \mathsf{E}n-algebra), B is an \mathsf{E}{n-1}-algebra, and f : A \to Z(B) is a central morphism of E_n-algebras.

      The Swiss-Cheese operad admits several variants and generalizations. In Voronov's original version, the morphism is replaced by an action A \otimes B \to B; in the extended Swiss-Cheese operad ESC_{mn}, the lower algebra is an \mathsf{E}m-algebra for some m < n; and in the complementarily-constrained disks operad \mathsf{CD}{mn}, the morphism is replaced by a derivation f + \epsilon \delta : A \to B[\epsilon].

      In this talk, I will explain approaches to prove the (non-)formality of some of the variants of the Swiss-Cheese operad, including a joint work in progress with Renato Vasconcellos Vieira.

      Orateur: Najib Idrissi (Université Paris Diderot / IMJ-PRG)
    • 10:00
      Pause café
    • 7
      Topological adventures in neuroscience (2ème partie)

      Over the past decade, research at the interface of topology and neuroscience has grown remarkably fast. Topology has, for example, been successfully applied to objective classification of neuron morphologies, to automatic detection of network dynamics, to understanding the neural representation of natural auditory signals, and to demonstrating that the population activity of grid cells exhibits toroidal structure, as well as to describing brain structure and function and analyzing the relationship between them in a novel and effective manner. In this series of lectures, I’ll provide an overview of various promising recent applications of topology in neuroscience.

      Orateur: Kathryn Hess Bellwald (EPFL)
    • 12:00
      Déjeuner
    • 8
      Algebraic models for classifying spaces of fibrations

      For a simply connected finite CW-complex X, we construct a tractable model for the rational homotopy type of the classifying space Baut(X) of the topological monoid of self-homotopy equivalences of X, aka the classifying space for fibrations with fiber X.

      The space Baut(X) is in general far from nilpotent, so one should not expect to be able to model its rational homotopy type by a dg Lie algebra over Q as in Quillen's theory. Instead, we work with dg Lie algebras in the category of algebraic representations of a certain reductive algebraic group associated to X.

      A consequence of our results is that the computation of the rational cohomology of Baut(X) reduces to the computation of Chevalley-Eilenberg cohomology of dg Lie algebras and cohomology of arithmetic groups with coefficients in algebraic representations. Our results also simplify and generalize certain earlier results of Ib Madsen and myself on Baut(M)
      for highly connected manifolds M.

      This is joint work with Tomas Zeman.

      Orateur: Alexander Berglund
    • 15:00
      Pause café
    • 9
      Higher Lie theory

      This talk will cover the recent complete treatment of the long-term research programme between Lie theory, deformation theory, and rational homotopy theory that originates in the works of Quillen, Deligne, and Sullivan. I will settle the integration theory of homotopy Lie algebras with algebraic infini-groupoids that give rise to explicit higher Baker—Campbell—Hausdorff formulas. A direct application will provide us with a new form of rational homotopy theory which holds in a much more general context than the previous ones. (Joint work with Daniel Robert-Nicoud availble at ArXiv:2010.10485.)

      Orateur: Bruno Vallette
    • 10
      Integration of curved homotopy Lie algebras

      The integration procedure which associates an infinity-groupoid to a (complete) homotopy Lie algebra dates back to Hinich and Getzler. Recently, a new method was developed by Robert-Nicoud and Vallette: it relies on the representation of the Getzler functor with a universal object and the use of the recent progresses of the operadic calculus. The goal of this talk is to generalize their procedure to curved homotopy Lie algebras, which are this time to be encoded by curved cooperads. This is a new type of algebraic structures which come naturally equipped with infinite summations without an underlying topology. We will explain how to integrate this new type of objects, generalizing the above cases, and their relationship with rational homotopy theory and deformation theory. In particular, they provide us with rational models for non-pointed nilpotent spaces.

      Orateur: Victor Roca Lucio
    • 11
      A-infinity structures on almost complex manifolds

      Dolbeault cohomology is a fundamental cohomological invariant for complex manifolds. This analytic invariant is connected to de Rham cohomology by means of a spectral sequence, called the Frölicher spectral sequence. In this talk, I will explore this connection from a multiplicative viewpoint: using homotopy-theoretical methods, I will describe how products (and higher products) behave in the Frölicher spectral sequence. Then, I will review an extension of the theory to the case of almost complex manifolds and talk about some open problems in geometry that may be addressed using homotopy theory.

      Orateur: Joana Cirici
    • 10:00
      Pause café
    • 12
      Higher algebra of A-infinity algebras and the n-multiplihedra

      In this talk, I will introduce the notion of n-morphisms between two A-infinity algebras. These higher morphisms are such that 0-morphisms corresponds to A-infinity morphisms and 1-morphisms correspond to A-infinity homotopies. I will then prove that the set of higher morphisms between two A-infinity algebras provide a satisfactory framework to study the higher algebra of A-infinity algebras : this set defines in fact a simplicial set, which has the property of being a Kan complex whose homotopy groups can be explicitly computed.

      If time permits, I will finally show how the combinatorics of n-morphisms between A-infinity algebras are encoded by new families of polytopes, which I call the n-multiplihedra and which generalize the standard multiplihedra. They are constructed from the standard simplices and multiplihedra, by lifting the Alexander-Whitney map to the level of simplices. The combinatorics arising in this context are moreover conveniently described in terms of overlapping partitions.

      Orateur: Thibaut Mazuir
    • 13
      La diagonale des opéraèdres / The diagonal of the operahedra

      Nous présentons une nouvelle famille de réalisations des opéraèdres, une famille de polytopes qui codent les opérades à homotopie près comprenant l'associaèdre et le permutoèdre. En se servant des techniques récemment développées par N. Masuda, A. Tonks, H. Thomas et B. Vallette, nous définissons une approximation cellulaire de la diagonale pour cette famille de polytopes de même que le produit tensoriel d'opérades à homotopie près pour lequel nous donnons une formule explicite.

      We study a new family of realizations of the operahedra, a family of polytopes encoding operads up to homotopy, which include the associahedra and the permutohedra. Using techniques recently developed by N. Masuda, A. Tonks, H. Thomas and B. Vallette, we define a cellular approximation of the diagonal of this family of polytopes and define the tensor product of operads up to homotopy with an explicit formula.

      Orateur: Guillaume Laplante-Anfossi
    • 12:00
      Déjeuner
    • 14
      Integrability of derived complex spaces

      Since the Newlander-Nirenberg integrability theorem in 1957, the description of complex manifolds through integrable almost complex structures provided many far reaching applications ranging from deformation theory to Hodge theory for example.With the rise of derived geometry during the last decade, and more recently of derived analytic geometry, comes naturally the following question: is there a fully homotopy coherent analogue of this integrability notion suitable for derived complex objects? We will explore this question through an approach inspired by operad theory. This is joint work in progress with Joan Millès.

      Orateur: Sinan Yalin
    • 15:00
      Pause café
    • 15
      Floyd's manifold is a conjugation space
      Orateur: Jérôme Scherer
    • 16
      Homotopically inflexible algebras

      An oriented closed connected d-manifold is inflexible if it does not admit selfmaps of unbounded degree. In addition, if for every oriented closed connected d-manifold M ′ the set of degrees of maps M′ → M is finite, then M is said to be strongly inflexible. The first examples of simply connected inflexible manifolds have been constructed by Arkowitz and Lupton using Rational Homotopy Theory. However, it is not known whether simply connected strongly manifolds exist, problem that is related to Gromov’s question on functorial semi-norms on homology. In this talk, using Sullivan models, we present a method that proves the failure of strongly inflexibility for all but one of the existing inflexible manifolds. This is a joint work with Vicente Mu˜noz and Antonio Viruel.

      Orateur: Cristina Costoya
    • 10:00
      Pause café
    • 17
      On the centre of crossed modules of groups and Lie algebras

      Crossed modules are algebraic models of homotopy 2-types and hence have \pi_1 and \pi_2 . We propose a definition of the centre of a crossed module whose essential invariants can be computed via the group cohomology H^i (\pi_1, \pi_2). This definition therefore has much nicer properties than one proposed by Norrie in the 80’s.

      Orateur: Mariam Pirashvili
    • 18
      Model structures and spectral sequences

      Model categories give an abstract setting for homotopy theory, allowing study of different notions of equivalence. I'll discuss various categories with associated functorial spectral sequences. In such settings, one can consider a hierarchy of notions of equivalence, given by morphisms inducing an isomorphism at a fixed stage of the associated spectral sequence. I'll discuss model structures with these weak equivalences for filtered complexes, for bicomplexes and for multicomplexes. I will talk about joint work with subsets of: Joana Cirici, Daniela Egas Santander, Xin Fu, Ai Guan, Muriel Livernet and Stephanie Ziegenhagen, as well as reporting on some work of my student James Brotherston.

      Orateur: Sarah Whitehouse (University of Sheffield)