Séminaire de Mathématique

Vologodsky and Coleman integration on curves with semi-stable reduction

by Prof. Amnon BESSER (Ben Gurion University & IHÉS)

Amphitéâtre Léon Motchane (IHES)

Amphitéâtre Léon Motchane


Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Coleman and Vologodsky integration theories give canonical parallel transports for unipotent differential equations - Coleman on overconvergent spaces with good reduction and Vologodsky on algebraic varieties, both over p-adic fields. In Coleman's theory the transport is via a path invariant under the action of Frobenius while in Vologodsky's theory one adds a condition involving the monodromy operator. While both theories can be formulated in fairly similar terms, the precise relationship between them is a bit unclear. In this talk, based on joint work in progress with Sarah Zerbes, I will describe some background on the two integration theories and I will describe the simplest non-trivial case - a holomorphic form on a curve with semi-stable reduction, where we can say what the relation should be. Time permitting I'll discuss possible applications to syntomic regulators.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now