Orateur
Dr
Alexander Hock
(Westfälische Wilhelms-Universität Münster)
Description
We show the exact solution of the self-dual $\phi^4$-model on the 4-dimensional Moyal space. Using the results explained in Raimar's talk, an implicitly defined function converges to a Fredholm integral, which is solved, for any coupling constant $\lambda>-\frac{1}{\pi}$, in terms of a hypergeometric function. We prove that the interacting model has spectral dimension $4-2\frac{\arcsin(\lambda\pi)}{\pi}$ for $|\lambda|<\frac{1}{\pi}$. It is this dimension drop which for $\lambda>0$ avoids the triviality problem of the $\phi^4_4$ model on the Moyal space.