Géométrie, Algèbre, Dynamique et Topologie

Bifurcations de cycles limites, problème du centre et espace des arcs de Nash

par Jean-Pierre FRANCOISE (Paris VI)

Europe/Paris
Salle 318 (IMB)

Salle 318

IMB

Description

This article introduces an algebro-geometric setting for the space of bifurcation functions involved in the local Hilbert's 16th problem on a period annulus. Each possible bifurcation function is in one-to-one correspondence with a point in the exceptional divisor E of the canonical blow-up BICn of the Bautin ideal I. In this setting, the notion of essential perturbation, first proposed by Iliev, is defined via irreducible components of the Nash space of arcs Arc(BICn,E). The example of planar quadratic vector fields in the Kapteyn normal form is further discussed.