Séminaire de Mathématique

Gromov-Hausdorff Limits of Curves with Flat Metrics and Non-Archimedean Geometry

by Prof. Dmitry Sustretov (Max Planck Inst. for Mathematics & IHES)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

Two versions of the SYZ conjecture proposed by Kontsevich and Soibelman give a differential-geometric and a non-Archimedean recipes to find the base of the SYZ fibration associated to a family of Calabi-Yau manifolds with maximal unipotent monodromy. In the first one this space is the Gromov-Hausdorff limit of associated geodesic metric spaces, and in the second one it is a subset of the Berkovich analytification of the associated variety over the field of germs of meromorphic functions over a punctured disc. In this talk I will discuss a toy version of a comparison between the two pictures for maximal unipotent degenerations of complex curves with flat metrics with conical singularities, and speculate how the techniques used can be extended to higher dimensions.

Contact
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×