Focus on:
All days
Oct 23, 2017
Oct 24, 2017
Oct 25, 2017
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Complex dynamics and quasi-conformal geometry.
from
Monday, October 23, 2017 (9:00 AM)
to
Wednesday, October 25, 2017 (7:05 PM)
Monday, October 23, 2017
9:00 AM
Accueil - café
Accueil - café
9:00 AM - 10:00 AM
10:00 AM
Matings and Thurston obstruction
-
Mistuhiro Shishikura
(
Kyoto University
)
Matings and Thurston obstruction
Mistuhiro Shishikura
(
Kyoto University
)
10:00 AM - 10:55 AM
For the matings of quadratic polynomials, the mateability was characterized by Mary Rees and Tan Lei, via Levy cycle theorem. For higher degree polynomials, with the absence of Levy cycle theorems, mateablity criterion is much harder to obtain. In this talk, I will discuss a possible characterization via a tree defined from the Thurston obstruction.
11:00 AM
PAUSE
PAUSE
11:00 AM - 11:30 AM
11:30 AM
Julia sets with a wandering branching point.
-
Xavier Buff
(
Université de Toulouse
)
Julia sets with a wandering branching point.
Xavier Buff
(
Université de Toulouse
)
11:30 AM - 12:25 PM
Room: L003
According to the Thurston no wandering triangle Theorem, a branching point in a locally connected quadratic Julia set is either preperiodic or precritical. Blokh and Oversteegen proved that this theorem does not hold for higher degree Julia sets: there exist cubic polynomials whose Julia set is a locally connected dendrite with a branching point which is neither preperiodic nor precritical. We shall reprove this result, constructing such cubic polynomials as limits of cubic polynomials for which one critical point eventually maps to the other critical point which eventually maps to a repelling fixed point. This is a joint work with Jordi Canela and Pascale Roesch.
2:30 PM
The Milnor-Thurston determinant and the Ruelle transfer operator.
-
Hans Henrik Rugh
(
Université de Paris-Sud, Orsay
)
The Milnor-Thurston determinant and the Ruelle transfer operator.
Hans Henrik Rugh
(
Université de Paris-Sud, Orsay
)
2:30 PM - 3:25 PM
Room: L003
The topological entropy $\htop$ of a continuous piecewise monotone interval map measures the exponential growth in the number of monotonicity intervals for iteratesof the map. Milnor and Thurston showed that $\exp(-\htop)$ is the smallest zero of an analytic function, now coined the Milnor-Thurston determinant, that keeps track of relative positions of forward orbits of critical points. On the other hand $\exp(\htop)$ equals the spectral radius of a Ruelle transfer operator $L$, associated with the map. Iterates of $L$ keep track of inverse orbits of the map. For no obvious reason, a Fredholm determinant for the transfer operator has not only the same leading zero as the M-T determinant but all peripheral (those lying in the unit disk) zeros are the same. In the talk I will show that on a suitable function space, the dual of the Ruelle transfer operator has a regularized determinant, identical to the Milnor-Thurston determinant, hereby providing a natural explanation for the above puzzle. This work was inspired by a collaboration with Tan Lei in 2014.
3:45 PM
The core entropy for polynomials of higher degree.
-
Giulio Tiozzo
(
University of Toronto
)
The core entropy for polynomials of higher degree.
Giulio Tiozzo
(
University of Toronto
)
3:45 PM - 4:40 PM
Room: L003
The notion of topological entropy for real multimodal maps goes back to the work of Milnor and Thurston in the 1970s. In order to extend this definition from the world of real maps to complex polynomials, W. Thurston defined the core entropy as the entropy of the restriction of the polynomial to its Hubbard tree. Together with Tan Lei, her students, and collaborators, a few years ago we set up to understand how this invariant works. In this talk, I will discuss the notion of core entropy and their definition for polynomials of any degree. In particular, we will explore the space PM(d) of "primitive majors" which serves as a combinatorial model for the space of polynomials of degree d, see how to compute the core entropy from the combinatorial data and prove it varies continuously on the parameter space. This is joint work with Gao Yan.
4:45 PM
Pause
Pause
4:45 PM - 5:15 PM
5:15 PM
Desingularizing Hilbert modular varieties.
-
John Hubbard
(
Cornell University and Université Aix-Marseille
)
Desingularizing Hilbert modular varieties.
John Hubbard
(
Cornell University and Université Aix-Marseille
)
5:15 PM - 6:10 PM
Room: L003
Hirzebruch in the 70’s found a way of resolving the cusps of Hilbert modular surfaces. I will present a new description of this procedure inspired by the dynamics of monomial maps, and show how it extends to Hilbert modular varieties of any dimension.
Tuesday, October 24, 2017
9:00 AM
Generic one parameter perturbation of parabolic points with several petals.
-
Arnaud Cheritat
Generic one parameter perturbation of parabolic points with several petals.
Arnaud Cheritat
9:00 AM - 9:55 AM
With Christiane Rousseau we study generic one-parameter perturbation of holomorphic vector fields in complex dimension one, with the aim of applying this to the study of bifurcation loci of one-parameter families.
10:00 AM
Pause-Café
Pause-Café
10:00 AM - 10:30 AM
10:30 AM
Geometric questions on Julia sets.
-
Peter HaissinskY
(
Universite d'Aix-Marseille
)
Geometric questions on Julia sets.
Peter HaissinskY
(
Universite d'Aix-Marseille
)
10:30 AM - 11:25 AM
Room: L003
We will address questions coming from quasiconformal geometry that will be specialized to Julia sets of rational maps.
11:45 AM
Wandering domains of transcendental functions (joint work with K. Baranski, X. Jarque and B. Karpinska)
-
Nuria Fagella
(
Universitat de Barcelona
)
Wandering domains of transcendental functions (joint work with K. Baranski, X. Jarque and B. Karpinska)
Nuria Fagella
(
Universitat de Barcelona
)
11:45 AM - 12:40 PM
We present several results concerning the relative position of points in the postsingular set $P(f)$ of a meromorphic map $f$ and the boundary of the successive iterates of a wandering component. We shall also construct an oscillating domain in class B on which the iterates are univalent.
2:30 PM
Two Moduli Spaces.
-
John Milnor
(
Institute for Mathematical Sciences. Stony Brook
)
Two Moduli Spaces.
John Milnor
(
Institute for Mathematical Sciences. Stony Brook
)
2:30 PM - 3:25 PM
Room: L003
A discussion of two moduli spaces and their awkward topologies: first the space of divisors on the Riemann sphere modulo the action of Moebius automophisms; and second the (compactified) space of curves in the complex projective plane modulo projective automorphisms. This is joint work with Araceli Bonifant.
3:45 PM
Computing the conformal dimension of Julia sets by elastic graphs.
-
Dylan Thurston
(
Indiana University, Bloomington
)
Computing the conformal dimension of Julia sets by elastic graphs.
Dylan Thurston
(
Indiana University, Bloomington
)
3:45 PM - 4:40 PM
One measure of the complexity of a Julia set are various notions of "conformal dimension". We show how to estimate the Ahlfors regular conformal dimension sharply from above and below by using energies of maps between graphs, a refinement of the earlier theorem that characterized rational maps using similar energies. This is joint work with Kevin Pilgrim.
4:45 PM
Pause-Café
Pause-Café
4:45 PM - 5:15 PM
5:15 PM
When hyperbolic maps are matings.
-
Mary Rees
(
University of Liverpool
)
When hyperbolic maps are matings.
Mary Rees
(
University of Liverpool
)
5:15 PM - 6:10 PM
Room: L003.
A mating is a rational map made by combining two polynomials of the same degree in a certain fashion. Matings were a recurring theme in Tan Lei's work, not surprisingly, since the concept was invented by Douady and Hubbard after their extraordinary success in describing the Mandelbrot set in the parameter space of quadratic polynomials. in fact, Tan Lei's thesis was essentially an existence result, prompted by a question of Douady, and showing that matings are in plentiful supply. It was, however, realised early on that not all rational maps can be described in terms of matings of polynomials. Nevertheless, there are regions of the parameter space of quadratic rational maps in which matings do give a good combinatorial description of the parameter space, and describe all hyperbolic rational maps of bitransitive type. I will talk about a relatively new instance of this, in the case where all Fatou components have disjoint closures.
Wednesday, October 25, 2017
9:00 AM
On combInaTorIal types of Cycles under $z^d$
-
Carsten Lunde Petersen
(
INM at Roskilde University
)
On combInaTorIal types of Cycles under $z^d$
Carsten Lunde Petersen
(
INM at Roskilde University
)
9:00 AM - 9:55 AM
Room: L003
The talk is based on joint work with Saeed Zakeri. Rotation sets for $z^d$, sets on which $z^d$ is topologically conjugate to a rigid rotation, are well studied in the literature. Much less is known about periodic orbits of other types of combinatorics. To be precise by a combinatorics (of period $q$) we mean a dynamics on $0< x_1 < x_2 < \ldots x_q <1\in\TT := \RR/\ZZ$ fixing $0\equiv 1$ and which acts as a permutation of order $q$ on the $x_i$. Which combinatorics are realized under $z^d$? In how many distinct ways is a given combinatorics realized? How does this number depend on the degree $d$?
10:00 AM
Pause-Café
Pause-Café
10:00 AM - 10:30 AM
10:30 AM
Rationality is practically decidable for Nearly Euclidean Thurston maps.
-
Kevin Pilgrim
(
Indiana Universityl. Boomington.
)
Rationality is practically decidable for Nearly Euclidean Thurston maps.
Kevin Pilgrim
(
Indiana Universityl. Boomington.
)
10:30 AM - 11:25 AM
Room: L003.
A Thurston map $f: (S^2, P) \to (S^2, P)$ is \emph{nearly Euclidean} if its postcritical set $P$ has four points and each branch point is simple. We show that the problem of determining whether $f$ is equivalent to a rational map is algorithmically decidable, and we give a practical implementation of this algorithm. Executable code and data from 50,000 examples is tabulated at \url{https://www.math.vt.edu/netmaps/index.php}. This is joint work with W. Floyd and W. Parry.
11:45 AM
Cubic Polynomials.
-
Pascale ROESCH
(
Université Paul Sabatier de Toulouse.
)
Cubic Polynomials.
Pascale ROESCH
(
Université Paul Sabatier de Toulouse.
)
11:45 AM - 12:40 PM
Room: L003
One of Tan Lei's interest was to understand dynamically the space of cubic polynomials. In this talk we will focus on this question.