Séminaire d'arithmétique à Lyon

The p-adic Stark conjecture at s=1 and applications

par Henri Johnston (Exeter)

Europe/Paris
Salle à déterminer (UMPA, ENS de Lyon)

Salle à déterminer

UMPA, ENS de Lyon

Description
Let E/F be a finite Galois extension of totally real number fields and let p be a prime. The `p-adic Stark conjecture at s=1' relates the leading terms at s=1 of p-adic Artin L-functions to those of the complex Artin L-functions attached to E/F. When E=F this is equivalent to Leopoldt’s conjecture for E at p and the ‘p-adic class number formula’ of Colmez. In this talk we discuss the p-adic Stark conjecture at s=1 and applications to certain cases of the equivariant Tamagawa number conjecture (ETNC). This is joint work with Andreas Nickel.