Description
Dans ce court exposé, je commencerai par introduire la notion de statistique en grande dimension avec un rappel sur les tests statistiques. On observera ensuite les réalisations d’un processus auto-régressif multivarié (VAR) de dimension $p$ défini par l’équation $X_{t+1}= \Theta X_{t} +Z_{t}$ où $\Theta$ est une matrice réelle de taille $p$ et la suite $(Z_t)_t$ est le bruit blanc gaussien. On suppose que la dimension $p$ de $(X_t)_t$ est assez grande. Sous les hypothèses de rang faible de la matrice $\Theta$, le but est de prédire si la matrice $\Theta$ subi un changement au cours du temps. Pour détecter cette rupture, on propose un test statistique dont la performance est vérifiée à l’aide des simulations numériques.