13–14 mai 2025
Bâtiment F, Institut Denis Poisson
Fuseau horaire Europe/Paris

Emma Grugier, IDP-Orléans: Small eigen values of non-reversible metastable diffusion processes with Neumann boundary conditions

13 mai 2025, 15:00
30m
F123 (Bâtiment F, Institut Denis Poisson)

F123

Bâtiment F, Institut Denis Poisson

Université de Tours, Parc de Grandmont, 37200 TOURS

Description

Let $\Omega \subset \mathbb{R}^d$ be a bounded smooth domain and $b : \Omega \rightarrow \mathbb{R}^d$ be a smooth vector field. We focus on the associated overdamped Langevin equation :
$$\dot{X_t}=b(X_t) + \sqrt{h} \dot{B_t} $$ in the low regime temperature where $h \rightarrow 0$ and in the case where $b$ admits the decomposition $b = - \nabla f - l$ with : $$\bullet ~ l\text{ a smooth vector field ; }$$ $$\bullet~ f\text{ a Morse function on }\overline{\Omega}\text{ admitting several local minima ; }$$ $$\bullet~ \nabla f \cdot l =0\text{ on }\overline{\Omega}.$$ In this framework, minima of the function $f$ correspond to metastable states for this Langevin dynamics. In this context, we analyse the spectrum of the infinitesimal generator of the dynamics : \begin{align*} L_h = - \frac{h}{2} \Delta + \nabla f \cdot \nabla + l \cdot \nabla \end{align*} with Neumann boundary conditions. In this case, moving particles will remain trapped inside the domain. More specifically, we will consider additional hypotheses ensuring that the measure $e^{-\frac{2f}{h}}dx$ is invariant.

Documents de présentation

Aucun document.