Given a compact hyperbolic surface together with a suitable choice of orthonormal basis of Laplace eigenforms, one can consider two natural spectral invariants: 1) the Laplace spectrum $\Lambda$, and 2) the 3-tensor Cijk representing pointwise multiplication (as a densely defined map L2 x L2 $\to$ L2) in the given basis. Which pairs ($\Lambda$,C) arise this way? Both $\Lambda$ and C are highly transcendental objects. Nevertheless, we will give a concrete and almost completely algebraic answer to this question, by writing down necessary and sufficient conditions in the form of equations satisfied by the Laplace eigenvalues and the Cijk. This answer was suggested by physicists Kravchuk, Mazac, and Pal, who introduced these equations (in an equivalent form) as a rigorous model for the crossing equations in conformal field theory.
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Maxim Kontsevich