7–11 avr. 2025
Institut de Mathématiques de Toulouse
Fuseau horaire Europe/Paris

Lorentzian metrics with conical singularities and bi-foliations of the torus

10 avr. 2025, 09:30
1h
Amphithéatre Schwartz ( Institut de Mathématiques de Toulouse)

Amphithéatre Schwartz

Institut de Mathématiques de Toulouse

Université Paul Sabatier 118, route de Narbonne - Bat. 1R3 31062 Toulouse Cedex 9

Orateur

Martin Mion -Mouton

Description

The constant curvature Lorentzian metrics having a finite number of conical singularities offer new examples of geometric structures on the torus, naturally generalizing the analogous Riemannian case. In the latter, works of Troyanov show that the data of the conformal structure and of the angles at the singularities entirely classify the metrics with conical singularities. In this talk, we will introduce the Lorentzian metrics with conical singularities, construct some examples, and present a rigidity phenomenon: de-Sitter tori with a singularity of fixed angle are determined by the topological equivalence class of their lightlike bifoliation. Contrarily to the Riemannian case, we will see that in the Lorentzian case this rigidity is intimately linked to one-dimensional dynamics phenomena.

Documents de présentation

Aucun document.