Sep 16 – 20, 2024
Le Bois-Marie
Europe/Paris timezone

Universally Counting Curves in Calabi-Yau Threefolds

Sep 18, 2024, 11:30 AM
1h
Centre de conférences Marilyn et James Simons (Le Bois-Marie)

Centre de conférences Marilyn et James Simons

Le Bois-Marie

35, route de Chartres 91440 Bures-sur-Yvette

Speaker

John Pardon (SCGP)

Description

Enumerating curves in algebraic varieties traditionally involves choosing a compactification of the space of smooth embedded curves in the variety. There are many such compactifications, hence many different enumerative invariants. I will propose a "universal" (very tautological) enumerative invariant which takes values in a certain "Grothendieck group of 1-cycles". It is often the case with such "universal" constructions that the resulting Grothendieck group is essentially uncomputable. But in this case, the cluster formalism of Ionel and Parker shows that, in the case of threefolds with nef anticanonical bundle, this Grothendieck group is freely generated by local curves. This reduces the MNOP conjecture (in the case of nef anticanonical bundle and primary insertions) to the case of local curves, where it is already known due to work of Bryan--Pandharipande and Okounkov--Pandharipande.

Presentation materials