→
Europe/Paris

Description

In this talk, I will present the results of a collaboration with Benjamin McKenna on the injective norm of large random Gaussian tensors and uniform random quantum states, and describe some of the context underlying this work. The injective norm is a natural generalization to tensors of the operator norm of a matrix and appears in multiple fields. In quantum information, the injective norm is one important measure of genuine multipartite entanglement of quantum states, known as geometric entanglement. In our recent preprint, we provide a high-probability upper bound on the injective norm of real and complex Gaussian random tensors, which corresponds to a lower bound on the geometric entanglement of random quantum states, and to a bound on the ground-state energy of a particular multispecies spherical spin glass model. Our result represents a first step towards solving an important question in quantum information that has been part of folklore.

The agenda of this meeting is empty