In this talk I will present a result of bilinear local controllability in finite time along the ground state for a degenerate wave equation. We proved that there exists a threshold time such that for a classical result of local controllability along the ground state can be achieved. For , we showed that the reachable set from the ground state is contained in a -submanifold of infinite codimension. For and strong degeneracy, a classical result of local controllability can be proved, except for a countable set of values of the degeneracy parameter. Finally, for and weak degeneracy, the reachable set is a -submanifold of codimension . The strategy of the proof consists in the resolution of a moment problem coupled with an inverse mapping theorem. However, because of the degeneracy of our operator, new difficulties arose. Indeed, while for it sufficed to apply Ingham theory to solve the moment problem, for we needed to extend the Kadec Theorem and finally, for , we combined general results on non-minimal families of exponentials with density properties of the eigenvalues of our degenerate operator.
The results presented in the talk are contained in the work: P. Cannarsa, P. Martinez, C. Urbani "Bilinear control of a degenerate hyperbolic equation", SIAM J. of Mathematical Analysis, vol. 55, n. 6, pages 6517 - 6553 (2023)