15–17 nov. 2023
Le Bois-Marie
Fuseau horaire Europe/Paris

Thirty-Six Entangled Officers of Euler: Quantum Solution of a Classically Impossible Combinatorial Problem

15 nov. 2023, 15:30
45m
Centre de conférences Marilyn et James Simons (Le Bois-Marie)

Centre de conférences Marilyn et James Simons

Le Bois-Marie

35, route de Chartres 91440 Bures-sur-Yvette

Orateur

Prof. Karol Życzkowski (Jagiellonian University)

Description

A quantum combinatorial designs is composed of quantum states, arranged with a certain symmetry and balance. They determine distinguished quantum measurements and can be applied for quantum information processing. Negative solution to the famous problem of 36 officers of Euler implies that there are no two orthogonal Latin squares of order six.
We show that the problem has a solution, provided the officers are entangled, and construct orthogonal quantum Latin squares of this size [1,2]. The solution can be visualized on a chessboard of size six, which shows that 36 officers are splitted in nine groups, each containing of four entangled states [3]. It allows us to construct a pure nonadditive quhex quantum error detection code.

References:
[$\mathbf{1}$]. S.A Rather, A.Burchardt, W. Bruzda, G. Rajchel-Mieldzioc, A. Lakshminarayan, K. Zyczkowski, Thirty-Six Entangled Officers of Euler, Phys.Rev.Lett. 128, 080507 (2022).
[$\mathbf{2}$]. D. Garisto, Euler’s 243-Year-Old ‘Impossible’ Puzzle Gets a Quantum Solution, Quanta Magazine, Jan. 10, 2022; https://www.quantamagazine.org/.
[$\mathbf{3}$]. K. Zyczkowski, W. Bruzda, G. Rajchel-Mieldzioc, A. Burchardt, S. A. Rather, A. Lakshminarayan, $9 × 4 = 6 × 6$: Understanding the Quantum Solution to the Euler’s Problem of 36 Officers, J. Phys.: Conf. Series 2448, 012003 (2023).

Documents de présentation