Focus on:
All days
Dec 4, 2023
Dec 5, 2023
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
GDR Mascot-Num : Workshop on Physics Informed Learning
from
Monday, December 4, 2023 (7:35 AM)
to
Tuesday, December 5, 2023 (6:00 PM)
Monday, December 4, 2023
2:00 PM
Some statistical insights into PINNs
-
Nathan DOUMECHE
(
Sorbonne Université
)
Some statistical insights into PINNs
Nathan DOUMECHE
(
Sorbonne Université
)
2:00 PM - 2:45 PM
Room: Amphi Schwartz
Physics-informed neural networks (PINNs) combine the expressiveness of neural networks with the interpretability of physical modeling. Their good practical performance has been demonstrated both in the context of solving partial differential equations and in the context of hybrid modeling, which consists of combining an imperfect physical model with noisy observations. However, most of their theoretical properties remain to be established. We offer some statistical guidelines into the proper use of PINNs.
2:45 PM
Towards instance-dependent approximation guarantees for scientific machine learning using Lipschitz neural networks.
-
Paul NOVELLO
(
IRT Saint-Exupéry
)
Towards instance-dependent approximation guarantees for scientific machine learning using Lipschitz neural networks.
Paul NOVELLO
(
IRT Saint-Exupéry
)
2:45 PM - 3:30 PM
Room: Amphi Schwartz
Neural networks are increasingly used in scientific computing. Indeed, once trained, they can approximate highly complex, non-linear, and high dimensional functions with significantly reduced computational overhead compared to traditional simulation codes based on finite-differences methods. However, unlike conventional simulation whose error can be controlled, neural networks are statistical, data-driven models, for which no approximation error guarantee can be inherently provided. This limitation hinders the use of neural networks on par with finite elements-based simulation codes in scientific computing. In this presentation, we show how to leverage the Lipschitz property of Lipschitz neural networks to establish strict post-training – instance dependent -- error bounds given a set of validation points. We show how to derive error bounds using Voronoï diagrams for a Lipschitz neural network approximating a K-Lipschitz function by taking advantage of recent parallel algorithms. Yet, in most scientific computing applications, the Lipschitz constant of the target function remains unknown. Therefore, we explore strategies to adapt and extend these bounds to the case of unknown Lipschitz constant and illustrate them on simple physical simulation test cases.
3:30 PM
Discussion
Discussion
3:30 PM - 3:45 PM
Room: Amphi Schwartz
3:45 PM
Coffee break
Coffee break
3:45 PM - 4:15 PM
Room: Amphi Schwartz
4:15 PM
Physics-informed Gaussian process regression : theory and applications
-
Iain HENDERSON
(
Institut de Mathématiques de Toulouse
)
Physics-informed Gaussian process regression : theory and applications
Iain HENDERSON
(
Institut de Mathématiques de Toulouse
)
4:15 PM - 5:00 PM
Room: Amphi Schwartz
Gaussian process regression (GPR) is the Bayesian formulation of kernel regression methods used in machine learning. This method may be used to treat regression problems stemming from physical models, the latter typically taking the form of partial differential equations (PDEs). In this presentation, we study the question of the design of GPR methods, in relation with a target PDE model. We first provide several necessary and sufficient conditions describing how to rigorously impose certain physical constraints (explicitly, the distributional PDE constraint if the PDE is linear, and the control of the W^{m,p} Sobolev energy norm) on the realizations of a given Gaussian process. These results only involve the kernel of the Gaussian process. We then provide a simple application test case, with the estimation of the solution of the 3D wave equation (central in acoustics), as well as the estimation of the physical parameters attached to this PDE. We finish with providing some outlooks concerning the design of finite difference schemes for solving PDEs, as well as the case of nonlinear PDEs. These results are a joint work with Pascal Noble (IMT/INSA) and Olivier Roustant (IMT/INSA), which was funded by the Service Hydrographique et Océanographique de la Marine (SHOM).
5:00 PM
Physics-informed polynomial chaos expansion
-
Lukas NOVAK
(
Brno University of Technology
)
Physics-informed polynomial chaos expansion
Lukas NOVAK
(
Brno University of Technology
)
5:00 PM - 5:45 PM
Room: Amphi Schwartz
Surrogate modeling of costly mathematical models representing physical systems is challenging since it is necessary to fulfill physical constraints in the whole design domain together with specific boundary conditions of investigated systems. Moreover, it is typically not possible to create a large experimental design covering whole input space due to computational burden of original models. Therefore there has been recently a considerable interest in developing surrogate models capable of satisfying physical constraints – spawning an entirely new field of physics-informed machine learning. In this lecture, a recently introduced methodology for the construction of physics-informed polynomial chaos expansion (PC2) that combines the conventional experimental design with additional constraints from the physics of the model will be presented. Physical constraints in PC2 can be represented by a set of differential equations and specified boundary conditions allowing surrogate model to be constructed more accurately with fewer physics-based model evaluations. Although the main purpose of the PC2 lies in combining data and physical constraints, it is also possible to construct surrogate model only from differential equations and boundary conditions alone without requiring evaluations of the original model. It is well known that a significant advantage of surrogate models in form of polynomial chaos expansions are their possibilities in uncertainty quantification including statistical and sensitivity analysis. Efficient uncertainty quantification by PC2 can be performed through analytical post-processing of a reduced basis filtering out the influence of all deterministic space-time variables. Various examples of PDEs with random parameters will be presented to show the efficiency and versatility of PC2 and its benefit for uncertainty quantification.
5:45 PM
Discussion
Discussion
5:45 PM - 6:00 PM
Room: Amphi Schwartz
Tuesday, December 5, 2023
9:00 AM
Représentation Neural Implicit pour des méthodes numériques hybrides
-
Emmanuel FRANCK
(
INRIA
)
Représentation Neural Implicit pour des méthodes numériques hybrides
Emmanuel FRANCK
(
INRIA
)
9:00 AM - 9:45 AM
Room: Amphi Schwartz
Dans une première partie, nous introduirons les méthodes numériques basées sur des représentations Neural Implicit que sont les PINNs et la méthode Neural Galerkin. Nous tenterons de montrer, que ces méthodes, bien qu'ayant des propriétés bien différentes des méthodes numériques usuelles pour les EDP, restent proche dans l'esprit des méthodes classiques. Après avoir discuté des forces et des faiblesses de ces nouvelles approches, nous introduirons des méthodes hybrides combinant PINNs d'un coté et méthodes Eléments Finis ou Galerkin Discontinu de l'autre. Nous discuterons rapidement la convergence de ces approches, que nous illustrerons numériquement.
9:45 AM
Deep augmented physical models: application to reinforcement learning and computer vision
-
Vincent LE GUEN
(
EDF R&D
)
Deep augmented physical models: application to reinforcement learning and computer vision
Vincent LE GUEN
(
EDF R&D
)
9:45 AM - 10:30 AM
Room: Amphi Schwartz
Modelling and forecasting complex physical systems with only partial knowledge of their dynamics is a major challenge across various scientific fields. Model Based (MB) approaches typically rely on ordinary or partial differential equations (ODE/PDE) and stem from a deep understanding of the underlying physical phenomena. Machine Learning (ML) and deep learning are more prior agnostic and have become state-of-the-art for many prediction tasks; however, modeling complex physical dynamics is still beyond the scope of pure ML methods, which often cannot properly extrapolate to new conditions as MB approaches do. Combining the MB and ML paradigms is an emerging trend to develop the interplay between the two paradigms. In this talk, we will present a principled training scheme called APHYNITY [1] for augmenting incomplete physical models with machine learning, with uniqueness guarantees. We will also present an application of augmented models to model-based reinforcement learning [2], where we show gains of performances compared to simplified physical models and data efficiency compared to pure data-driven models. We will also present an application to optical flow estimation [3], where we leverage the classical brightness constancy assumption. [1] Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome & Patrick Gallinari. Augmenting physical models with deep networks for complex dynamics forecasting. International Conference on Learning Représentations (ICLR) 2021. [2] Zakariae El Asri, Clément Rambour, Vincent Le Guen and Nicolas Thome, « Residual Model-Based Reinforcement Learning for Physical Dynamics », NeurIPS 2022 Offline RL workshop. [3] Vincent Le Guen, Nicolas Thome, Clément Rambour, « Complementing Brightness Constancy with Deep Networks for Optical Flow Prediction », European Conference on Computer Vision (ECCV) 2022
10:30 AM
Discussion
Discussion
10:30 AM - 10:45 AM
Room: Amphi Schwartz
10:45 AM
Coffee break
Coffee break
10:45 AM - 11:15 AM
Room: Amphi Schwartz
11:15 AM
Tensor networks and optimal sampling in physics informed machine learning
-
Philipp TRUNSCHKE
(
Université de Nantes
)
Tensor networks and optimal sampling in physics informed machine learning
Philipp TRUNSCHKE
(
Université de Nantes
)
11:15 AM - 12:00 PM
Room: Amphi Schwartz
Many parametric PDEs have solutions that possess a high degree of regularity with respect to their parameters. Low-rank tensor formats can leverage this regularity to overcome the curse of dimensionality and achieve optimal convergence rates in a wide range of approximation spaces. A particular advantage of these formats is their highly structured nature, which enables us to control the approximation error and sample complexity bounds. In this presentation, we will explore how to take advantage of these benefits to effectively learn the solutions of parametric PDEs.
12:00 PM
Discussion
Discussion
12:00 PM - 12:15 PM
Room: Amphi Schwartz