Mar 21 – 23, 2016
Institut de Mathématiques de Bordeaux
Europe/Paris timezone

Une classe de schémas à mailles décalées d’ordre élevé pour les équations d’Euler compressible.

Mar 22, 2016, 3:00 PM
30m
Institut de Mathématiques de Bordeaux

Institut de Mathématiques de Bordeaux

351 Cours de la Libération 33400 Talence

Speaker

Nicolas Therme

Description

Les travaux présentés ici s'inscrivent dans une démarche de constructions de schémas numériques permettant de calculer des écoulement à tout nombre de Mach. Le cadre est ici le développement de schémas d'ordre élevé pour les équations d'Euler compressible satisfaisant les propriétés suivantes : positivité de la masse volumique et de l'énergie interne, conservation de l'énergie totale du système, consistance au sens de Lax des solutions discrètes ainsi que la vérification d'une inégalité d'entropie faible à la limite. Les schémas sont découplés en temps et une discrétisation spatiale de type maillage décalé est adoptée. Les inconnues scalaires sont définies au centre des cellules d'un premier maillage alors que les inconnues de vitesses sont définies sur un second maillage centré sur les faces du premier. La formulation en énergie interne des équations est utilisée afin de garantir sa positivité et éviter une discrétisation fastidieuse de l'équation de bilan d'énergie total sur un maillage décalé. Un bilan d'énergie cinétique discret est obtenu et un terme source est ajouté dans le bilan d'énergie interne pour retrouver un bilan d'énergie total à la limite. Des techniques d'interpolations d'ordre élevé de type MUSCL sont utilisées dans les opérateurs convectifs discrets. Elles se basent uniquement sur la vitesse matérielle du fluide et permettent de garantir sous condition de CFL la positivité de la masse volumique et de l'énergie interne. On s'assure ainsi que l'énergie totale ne peut croître et on obtient de plus une inégalité d'entropie discrète. Sous des hypothèses de contrôle des normes des solutions discrètes des schémas, on prouve que toute suite convergente de ces solutions va nécessairement converger vers une solution faible des équations d'Euler. De plus elles vérifient une inégalité d'entropie faible à la limite.

Presentation materials

There are no materials yet.