In this thesis, we study different theoretical aspects of deep learning, in particular optimization, robustness, and approximation.
Optimization: We study the optimization landscape of deep linear neural networks with the square loss. It is known that, under weak assumptions, there are no spurious local minima and no local maxima. However, the existence and diversity of non-strict saddle points, which can play a role in first-order algorithms' dynamics, have only been lightly studied. We go a step further with a full analysis of the optimization landscape at order
Robustness: We study the theoretical properties of orthogonal convolutional layers. We establish necessary and sufficient conditions on the layer architecture guaranteeing the existence of an orthogonal convolutional transform. The conditions prove that orthogonal convolutional transforms exist for almost all architectures used in practice for 'circular' padding. We also exhibit limitations with 'valid' boundary conditions and 'same' boundary conditions with zero-padding. Recently, a regularization term imposing the orthogonality of convolutional layers has been proposed, and impressive empirical results have been obtained in different applications (Wang et al. 2020). The second motivation is to specify the theory behind this. We make the link between this regularization term and orthogonality measures. In doing so, we show that this regularization strategy is stable with respect to numerical and optimization errors and that, in the presence of small errors and when the size of the signal/image is large, the convolutional layers remain close to isometric. The theoretical results are confirmed with experiments and the landscape of the regularization term is studied. Experiments on real datasets show that when orthogonality is used to enforce robustness, the parameter multiplying the regularization term can be used to tune a tradeoff between accuracy and orthogonality, for the benefit of both accuracy and robustness. Altogether, the study guarantees that the regularization proposed in Wang et al. (2020) is an efficient, flexible and stable numerical strategy to learn orthogonal convolutional layers.
Approximation: We study the fundamental limits to the expressive power of neural networks. Given two sets