Orateur
Description
Lorsque le linéarisé d'une équation n'est pas contrôlable, il est naturel de considérer une approximation quadratique. Si cette approximation quadratique présente une forme de coercivité, cela mène à une obstruction à la contrôlabilité locale de l'équation non-linéaire. Nous présenterons deux équations pour lesquelles ceci se manifeste : l'équation de KdV lorsque la longueur est dite "critique", et un bac d'eau modélisé par des équations de Saint-Venant. L'équation de KdV a la particularité d'avoir un contrôle frontière, qui est plus délicat à traiter que le contrôle interne. Tandis, que notre résultat sur le bac est intéressant par la minoration du temps de contrôle que nous obtenons, deux fois supérieur à ce que la vitesse de propagation des vagues suggèrerait. Ce travail est en collaboration avec Jean-Michel Coron et Hoai-Minh Nguyen.