I will describe an inductive algorithm computing Gromov-Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. This uses a monodromy analysis, as well as new degeneration and splitting formulas for nodal Gromov--Witten invariants. This is joint work with Hülya Argüz, Rahul Pandharipande, and Dimitri Zvonkine. This will be the...
The notion of BPS structure (or symmetric stability structure) describes the output of Donaldson-Thomas's theory on a 3-Calabi-Yau category and can be realized also from a quadratic differential on a Riemann surface. A BPS structure can be associated with a Riemann-Hilbert problem, which allows us to understand the Kontsevich-Soibelman wall-crossing formula as an iso-Stokes property when the...
Holomorphic connections on Riemann surfaces have been widely studied, as well as their monodromy representations. Their moduli spaces have natural Poisson/symplectic structures, and they can be both deformed and quantized: varying the Riemann surface structure leads to the action of mapping class groups on character varieties (the "symplectic nature" of the fundamental group of surfaces),...
I will describe an inductive algorithm computing Gromov-Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. This uses a monodromy analysis, as well as new degeneration and splitting formulas for nodal Gromov--Witten invariants. This is joint work with Hülya Argüz, Rahul Pandharipande, and Dimitri Zvonkine. This will be the...
Donaldson-Thomas theory aims at counting sheaves on Calabi-Yau threefolds. The category of sheaves on a toric threefold is derived equivalent to the category of representation of a quiver with potential obtained from a tiling of the torus. On this class of example, the virtual Euler number of the moduli space of quiver representations can be computed by toric localization with respect to an...
Following the pioneering work of Wilson who realized the phase space of the (classical complex) Calogero-Moser system as a quiver variety, Chalykh and Silantyev observed in 2017 that various generalizations of this integrable system can be constructed on quiver varieties associated with cyclic quivers. Building on these results, I will explain how such systems can be visualized at the level of...
The topological recursion is a ubiquitous procedure that associates to some initial data called spectral curve, consisting of a Riemann surface and some extra data, a doubly indexed family of differentials on the curve, which often encode some enumerative geometric information, such as volumes of moduli spaces, intersection numbers and knot invariants. The quantum curve conjecture claims that...
Chern-Simons Theories with gauge super-groups appear naturally in string theory and they possess interesting applications in mathematics, e.g. for the construction of knot and link invariants. In my talk, I will review the framework of combinatorial quantization of Chern Simons theory and explain how this framework can be adapted for applications to superalgebras. This will give rise to...
In 2017, Norbury introduced a collection of cohomology classes on the moduli space of curves, and predicted that their intersection with psi classes solves the KdV hierarchy. In a joint work in progress with N. Chidambaram and E. Garcia-Failde, we consider a deformation of Norbury’s class and, via the Givental–Teleman reconstruction theorem, we express such deformation in terms of kappa...