Séminaire d'arithmétique à Lyon

Points parfaits des variétés abéliennes

par Dr Emiliano AMBROSI

Europe/Paris
Description

Soit k un corps de type fini sur F_p et soit A une variété abélienne sans facteurs d'isogénie isotriviaux. Soit k^{perf} la clôture parfait de k. Motivé par ses applications à la conjecture de Mordell-Lang, on étudie le groupe A(k^{perf}). Si tous les facteurs simples de A ont p-rang>0, on montre que tous les éléments infiniment p-divisibles de A(k^{perf}) sont de torsion et on donne des conditions qui garantissent sa génération finie. La démonstration est basée sur l'étude des certains groupes p-divisibles associés à certains 1-motifs et sur leur incarnation cristalline et surconvergente.