Séminaire de Combinatoire de Lyon à l'ENS

Essentially irreducible maps and Weil-Petersson volumes (online seminar)

by Timothy Budd (Radboud University)


I will discuss the enumeration of certain maps on a genus-g surface, g ≥ 0, with n faces of prescribed even degrees with a girth constraint. More precisely I consider maps that have no vertices of degree one and that are essentially 2b-irreducible for b ≥ 0 meaning that simple contractible cycles of length 2b or less are disallowed unless they bound a single face of degree 2b. Using results of Bouttier & Guitter I will show that such maps are counted by polynomials in b and the face degrees and that the polynomials satisfy recursion relations ("string" and "dilaton" equations) in n. This generalizes a result by Norbury in the absence of the irreducibility constraint. Next, I will show that the leading orders in b of these polynomials are related to the Weil-Petersson volumes of hyperbolic surfaces with geodesic boundary components (at least when g=0,1). If time permits I will comment on a special case where this relation can be understood bijectively.

Le séminaire sera donné en ligne sur la plateforme de visioconférence de l'ENS de Lyon. Les informations pour y accéder seront envoyées sur la liste de diffusion du séminaire, merci de contacter l'un des organisateurs si vous n'y êtes pas abonné.