We explore in detail the properties of two melonic quantum mechanical theories which can be formulated either as fermionic matrix quantum mechanics in the new large D limit, or as disordered models. Both models have a mass parameter m and the transition from the perturbative large m region to the strongly coupled "black-hole" small m region is associated with several interesting phenomena. One model, with U(n)^2 symmetry and equivalent to complex SYK, has a line of first-order phase transitions terminating, for a strictly positive temperature, at a critical point having non-trivial, non-mean-field critical exponents for standard thermodynamical quantities. Quasi-normal frequencies, as well as Lyapunov exponents associated with out-of-time-ordered four-point functions, are also singular at the critical point, leading to interesting new critical exponents. The other model, with reduced U(n) symmetry, has a quantum critical point at strictly zero temperature and positive critical mass m*. For 0<m<m*, it flows to a new gapless IR fixed point, for which the standard scale invariance is spontaneously broken by the appearance of distinct scaling dimensions Δ+ and Δ- for the Euclidean two-point function when t→ +∞ and t→ -∞
Slava Rychkov