22–24 oct. 2014
Fuseau horaire Europe/Paris

The codimension-three conjecture for holonomic DQ-modules

22 oct. 2014, 10:50
40m
Exposé de recherche sur proposition TopAlg

Orateur

Dr Francois Petit (Université du Luxembourg)

Description

The codimension 3 conjecture for micro-differential modules was formulated at the end of the seventies by M. Kashiwara and was recently solved by M. Kashiwara and K. Vilonen. It is related to the following problem of extending analytic objects: a holonomic microdifferential module defined outside of a codimension three analytic subset of a Lagrangian submanifold of an open subset of the cotangent bundle extends in a unique way to an holonomic system. This provides informations on the category of perverse sheaves with micro-support in a given conical Lagrangian subvariety of the cotangent bundle. Since DQ-modules provide a generalization of microdifferential modules to arbitrary symplectic manifolds, it is natural to extend the codimension-three conjecture to holonomic DQ-modules. In this talk, I will explain how to obtain a similar result for holonomic DQ-modules on a complex symplectic manifold.
Mots Clés / Keywords DQ-modules, extension theorem,

Auteur principal

Dr Francois Petit (Université du Luxembourg)

Documents de présentation

Aucun document.