Choisissez le fuseau horaire
Le fuseau horaire de votre profil:
In joint work with François Maucourant, we study the dynamics of unipotent flows on frame bundles of hyperbolic manifolds of infinite volume. We prove that they are topologically transitive, and that the natural invariant measure, the so-called "Burger-Roblin measure", is ergodic, as soon as the geodesic flow admits a finite measure of maximal entropy, and this entropy is strictly greater than the codimension of the unipotent flow inside the maximal unipotent flow. The latter result generalises a theorem of Mohammadi and Oh.
In the talk, I will present the main ideas of this work.
Fanny Kassel