Les personnes qui possèdent un compte PLM-Mathrice sont invités à l'utiliser.
Séminaire de Géométrie Arithmétique Paris-Pékin-Tokyo

Height functions for motives, Hodge analogues, and Nevanlinna analogues

by Prof. K. Kato (University of Chicago)

mercredi 27 septembre 2017 de au (Europe/Paris)
at IHES ( Centre de conférences Marilyn et James Simons )
Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

We compare height functions for (1) points of an algebraic variety over a number field, (2) motives over a number field, (3) variations of Hodge structure with log degeneration on a projective smooth curve over the complex number field, (4) horizontal maps from the complex plane C to a toroidal partial compactification of the period domain. Usual Nevanlinna theory uses height functions for (5) holomorphic maps f from C to a compactification of an algebraic variety V and considers how often the values of f lie outside V. Vojta compares (1) and (5). In (4), V is replaced by a period domain. The comparisons of (1)--(4) provide many new questions to study.

Organisé par Ahmed Abbes
Contact Email: cecile@ihes.fr