Séminaire de Géométrie Arithmétique Paris-Pékin-Tokyo

Height functions for motives, Hodge analogues, and Nevanlinna analogues

by Prof. K. Kato (University of Chicago)

Centre de conférences Marilyn et James Simons (IHES)

Centre de conférences Marilyn et James Simons


Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette

We compare height functions for (1) points of an algebraic variety over a number field, (2) motives over a number field, (3) variations of Hodge structure with log degeneration on a projective smooth curve over the complex number field, (4) horizontal maps from the complex plane C to a toroidal partial compactification of the period domain. Usual Nevanlinna theory uses height functions for (5) holomorphic maps f from C to a compactification of an algebraic variety V and considers how often the values of f lie outside V. Vojta compares (1) and (5). In (4), V is replaced by a period domain. The comparisons of (1)--(4) provide many new questions to study.