Séminaire de Mathématique

Hilbert 10 via Additive Combinatorics

par Carlo Pagano (Concordia University)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

In 1970 Matiyasevich, building on earlier work of Davis--Putnam--Robinson, proved that every enumerable subset of $\mathbb{Z}$ is Diophantine, thus showing that Hilbert's 10th problem is undecidable for $\mathbb{Z}$. The problem of extending this result to the ring of integers of number fields (and more generally to finitely generated infinite rings) has attracted significant attention and, thanks to the efforts of many mathematicians, the task has been reduced to the problem of constructing, for certain quadratic extensions of number fields $L/K$, an elliptic curve $E/K$ with $rk(E(L))=rk(E(K))>0$.  In this talk I will explain joint work with Peter Koymans, where we use Green--Tao to construct the desired elliptic curves, settling Hilbert 10 for every finitely generated infinite ring.

 

========

Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.

Organisé par

Emmanuel Ullmo

Contact