Présidents de session
Théorie analytique-additive des nombres
- Gautami Bhowmik (Université Lille 1)
Winfried Kohnen
(Universität Heidelberg)
23/06/2014 10:00
Théorie analytique-additive des nombres
We will give a survey on recent results about sign changes of Fourier coefficients of cusp forms in one and several
variables.
Lilian Matthiesen
(Institut de Mathématiques de Jussieu)
23/06/2014 11:30
Théorie analytique-additive des nombres
The aim of this talk is to explain a strategy that allows us to bound the Fourier coefficients of a large class of not necessarily bounded multiplicative functions. The interest in this result lies in the fact that the strategy can be adapted to show that these multiplicative functions give rise to functions that are orthogonal to linear nilsequences when applying a `W-trick'. This, in turn,...
Catherine Goldstein
(Institut de mathématiques de Jussieu)
23/06/2014 14:30
Théorie analytique-additive des nombres
Contrarily to other parts of number theory, the history of analytic number theory often appears as a collection of particular, even isolated, episodes, focussing on Euler or Riemann or Hadamard and de La Vallée-Poussin. The talk will discuss some of these gems, as well as less well-known ones, and comment on the discontinuous character of their history.
Julio Andrade
(IHES)
23/06/2014 15:45
Théorie analytique-additive des nombres
In this talk I will explore some traditional problems of analytic number theory in the context of function fields over a finite field. Several such problems which are currently viewed as intractable can, in the function field scenario, be attacked with vastly different tools than those of traditional analytic number theory.
The resulting theorems in the function field setting can be used to...
Alain Plagne
(École polytechnique)
23/06/2014 17:15
Théorie analytique-additive des nombres
Nous étudions des phénomènes de seuil en théorie additive des nombres. L'objet central est les pseudo puissances s-ièmes introduites par Erdos et Renyi en 1960. In 1975, Goguel a montré que, presque surement, une telle suite n'était pas une base asymptotique d'ordre s. On verra qu'elle est presque surement base d'ordre s+\epsilon. On étudie aussi la taille du plus petit complément additif de...