Supercritical Frozen Erdős-Rényi and Uniform Random Forests
by
Amphithéâtre Léon Motchane
IHES
Seed Seminar of Mathematics and Physics
Fall' 25 : Random Forests and Fermionic Field Theories
The frozen Erdős-Rényi random graph is a variant of the standard dynamical Erdős-Rényi random graph that prevents the creation of the giant component by freezing the evolution of connected components with a unique cycle. The formation of multicyclic components is forbidden, and the growth of components with a unique cycle is slowed down, depending on a parameter p∈[0,1] that quantifies the slowdown. In this talk, we will study the fluid limit of the main statistics of this process, that is their functional convergence as the number of vertices of the graph becomes large and after a proper rescaling, to the solution of a system of differential equations. The proof is based on the free forest property of the frozen model: the forest part of the graph is a uniform random forest. In order to prove the fluid limit results, we will explain how to study and count forests using conditioned random walks.
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Matteo D’Achille (LMO)
Aymane El Fardi (EIGSI)
Veronica Fantini (LMO)
Emmanuel Kammerer (CMAP)
Sophie Mutzel (LPENS & CAS)
Junchen Rong (CPhT)
Francesco Russo (CPhT)