A local Sign Decomposition for Symplectic Self-dual Galois Representations
par
Amphithéâtre Léon Motchane
IHES
We present a new structure on the first Galois cohomology of families of symplectic self-dual $p$-adic representations of $G_{Q_p}$ of rank two. This is a functorial decomposition into free rank one Lagrangian submodules encoding Bloch-Kato subgroups and epsilon factors, mirroring an underlying symplectic structure. This local sign decomposition has local as well as global applications, including compatibility of the Mazur-Rubin arithmetic local constants and epsilon factors, and new cases of the parity conjecture. It also leads to a formulation and proof of an analogue of Rubin's conjecture over ramified quadratic extensions of $Q_p$, which initiates an integral Iwasawa theory for CM elliptic curves at primes of additive reduction. (Joint with A. Burungale, K. Nakamura, and K. Ota.)
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Ahmed Abbes