Extract One-arm Exponent in FK Models from the Convergence of Height Functions to GFF
by
Amphithéâtre Léon Motchane
IHES
Seed Seminar of Mathematics and Physics
We consider FK models with $q$ in $[0,4]$ on the square lattice and the whole plane. We assume the convergence of height functions to GFF and in particular we assume that we know the variance $\sigma^2$ of the GFF. Then, we sketch an approach to get the exponent $\alpha_1$ describing the probability of having a primal crossing of an annulus. The basis for this approach is the BKW coupling relating the height function to the interface loops of FK. We show that by choosing appropriate test functions (viewd as placing charges on the plane), we can get relations between $\sigma^2$, $\alpha_1$, and a factor accounting for local concentration of small interface loops.
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Matteo D’Achille (LMO)
Aymane El Fardi (EIGSI)
Veronica Fantini (LMO)
Emmanuel Kammerer (CMAP)
Edoardo Lauria (LPENS & CAS)
Sophie Mutzel (LPENS & CAS)
Junchen Rong (CPhT)