Séminaire MAC

Stability of hyperbolic systems with non-symmetric relaxation

by Lorenzo Liverani

Europe/Paris
Description

In this talk I will discuss a recent work (in collaboration with T. Crin-Barat, L. Y. Shou and E. Zuazua) concerning the stability of one-dimensional linear hyperbolic systems with non-symmetric relaxation. Introducing a new frequency-dependent Kalman stability condition, we prove an abstract decay result underpinning a form of inhomogeneous hypocoercivity. In contrast with the homogeneous setting, the decay rates depend on how the Kalman condition is fulfilled and, in most cases, a loss of derivative occurs: one must require an additional regularity assumption on the initial data to ensure the decay. Under structural assumptions, we refine our abstract result by providing an algorithm, of wide applicability, for the construction of Lyapunov functionals. This allows us to systematically establish decay estimates for a given system and uncover algebraic cancellations (beyond the reach of the Kalman-based approach) reducing the loss of derivatives in high frequencies.