23–24 juin 2025
Département de Mathématiques (DMATHS)
Fuseau horaire Europe/Paris

Estimation of subcritical Galton Watson processes with correlated immigration

24 juin 2025, 15:30
1h
Salle 70E, Bât. Abel de Pujol 2 (Département de Mathématiques (DMATHS))

Salle 70E, Bât. Abel de Pujol 2

Département de Mathématiques (DMATHS)

Université Polytechnique Hauts-de-France, Campus Mont Houy, 59313 Valenciennes

Orateurs

Landy Rabehasaina (Université Marie et Louis Pasteur.) Yacouba Boubacar Mainassara (Université Polytechnique Hauts-de-France)

Description

We consider an observed subcritical Galton Watson process $\{Y_n, n \in \mathbb{Z}\}$ with correlated stationary immigration process $\{\epsilon_n, n \in \mathbb{Z}\}$. Two situations are presented. The first one is when $cov(\epsilon_0, \epsilon_k) = 0$ for $k$ larger than some $k_0$ : a consistent estimator for the reproduction and mean immigration rates is given, and a central limit theorem is proved. The second one is when $\{\epsilon_n, n \in \mathbb{Z}\}$ has general correlation structure : under mixing assumptions, we exhibit an estimator for the the logarithm of the reproduction rate and we prove that it converges in quadratic mean with explicit speed. In addition, when the mixing coefficients decrease fast enough, we provide and prove a two terms expansion for the estimator. Numerical illustrations are provided.

Author

Landy Rabehasaina (Université Marie et Louis Pasteur.)

Co-auteur

Yacouba Boubacar Mainassara (Université Polytechnique Hauts-de-France)

Documents de présentation

Aucun document.