Séminaire de Mathématique

On the Supercritical Phase of the $\phi^4$ Model

by Franco Severo (Institut Camille Jordan, Lyon 1)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

Probability and analysis informal seminar

The $\phi^4$ model is a real-valued spin system with quartic potential. This model has deep connections with the classical Ising model, and both are expected to belong to the same universality class. We construct a random cluster representation for $\phi^4$, analogous to that of the Ising model. For this percolation model, we prove that local uniqueness of macroscopic cluster holds throughout the supercritical phase. The corresponding result for the Ising model was proved by Bodineau (2005) and serves as the crucial ingredient in renormalization arguments used to study fine properties of the supercritical behaviour, such as surface order large deviations, the Wulff construction and exponential decay of truncated correlations. The unboundedness of spins in the $\phi^4$ model imposes considerable difficulties when compared with the Ising model. This is particularly the case when handling boundary conditions, which we do by relying on the recently constructed random current representation of the model.

Joint work with Trishen Gunaratnam, Christoforos Panagiotis and Romain Panis.

========

Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.

Organized by

Thierry Bodineau, Pieter Lammers, Yilin Wang

Contact