14–16 avr. 2025
Institut de Mathématiques de Bordeaux
Fuseau horaire Europe/Paris

Existence and Uniqueness for the SQG Vortex-Wave System when the Vorticity is Constant near the Point-Vortex

15 avr. 2025, 15:00
1h
Salle de conférence (Institut de Mathématiques de Bordeaux)

Salle de conférence

Institut de Mathématiques de Bordeaux

351 cours de la Libération, 33405 Talence

Orateur

Ludovic Godard-Cadillac

Description

The aim of this talk is to study the Cauchy theory for the vortex-wave system associated to the Surface Quasi-Geostrophic equation with parameter 0<s<1. We obtain local existence of classical solutions in H^4 under the standard "plateau hypothesis'', H^2-stability of the solutions, and a blow-up criterion. In the sub-critical case s>1/2 we establish global existence of weak solutions. For the critical case s=1/2, we introduced a weaker notion of solution (V-weak solutions) to give a meaning to the equation and prove global existence.

Documents de présentation

Aucun document.