Orateur
Mathias Lepoutre
Description
On s'intéresse à deux problèmes énumératifs auxquels manquait une preuve bijective. Le premier, énoncé par Bousquet-Mélou et Mishna en 2010, a été réduit par Elizalde en 2014 à trouver une bijection entre les chemins sous-diagonaux de longueur paire utilisant des pas N,S,E,O finissant sur l'axe, et les excursions dans le quart de plan utilisant les mêmes pas. Le deuxième, énoncé en 2015 par Burrill et al., qui consiste à montrer bijectivement que les diagrammes de partition ouverts sans 3-croisement étendu sont énumérés par les nombres de Baxter, se ramène au problème précédent en utilisant cette fois les pas N,S,E,O,NO,NS,EO,ES. La similarité de ces deux problèmes nous amène à emprunter une démarche commune qui consiste à retirer les arcs ouverts de la représentation par diagrammes définies par Chen et al. en 2005, pour se ramener à des excursions sous-diagonales marquées. La preuve consiste ensuite à établir des bijections entre certains objets marqués, en passant notamment par les forêts de Schnyder, ou encore les permutations de Baxter alternantes.