Orateur
Elliot Kienzle
(UC Berkeley)
Description
When Illustrating a mathematical idea, the first thing you need to decide is the scale. Is this concept something you can hold in your hand, or something to wander around in? I will reflect on the scale of various analogies used by research mathematicians, such as Thurston's train tracks and pictures of symplectic manifolds. Topologists use the metaphors of "geography" and "botany" to organize problems in their field. I will argue that geography and botany are flexible analogies, which give a natural scale for mathematical illustrations.