29 mai 2017 à 2 juin 2017
TOULOUSE
Fuseau horaire Europe/Paris

Quasi-asymptotically conical Calabi-Yau manifolds

1 juin 2017, 17:05
45m
Amphi Schwartz IMT building 1R3 (TOULOUSE)

Amphi Schwartz IMT building 1R3

TOULOUSE

Paul Sabatier University

Orateur

M. Frédéric Rochon

Description

We will explain how to construct new examples of quasi-asymptotically conical (QAC) Calabi-Yau manifolds that are not quasi-asymptotically locally Euclidean (QALE). Our strategy consists in introducing a natural compactification of QAC-spaces by manifolds with fibred corners and to give a definition of QAC-metrics in terms of a natural Lie algebra of vector fields on this compactification. Using this and the Fredholm theory of Degeratu-Mazzeo for elliptic operators associated to QAC-metrics, we can in many instances obtain Kahler QAC-metrics having Ricci potential decaying sufficiently fast at infinity. We can then obtain QAC Calabi-Yau metrics in the Kahler classes of these metrics by solving a corresponding complex Monge-Ampere equation. This is a joint work with Ronan Conlon and Anda Degeratu.

Documents de présentation

Aucun document.